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I’m going to talk about our experiences of determining sample size for an ERP
experiment using sequential bayes factors



= Power analysis may mis-estimate

HOW many sample size
Subjects dO | » ERP time-consuming, expensive
need? = Can’t we just recruit until we have

enough evidence?

Optional stopping rule

Burning question for every scientist: How many subjects?
Power analysis may under-estimate or over-estimate sample size
Especially bad for something like ERP, which is time-consuming and expensive

Nice: only recruit as many subjects as necessary to provide evidence for/against
hypotheses

This is called an optional stopping rule

And I’'m going to give an example of how we applied it to an ERP experiment



Optional stopping with p-values can he misleading

p Value
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Fig. 2. lllustrative simulation of p values obtained by a researcher who
continuously adds an observation to each of two conditions. conducting
a t test after each addition. The dotted line highlights the conventional
significance criterion of p <.05.

One way to do optional stopping is to compute a p-value after adding subjects and
stop when p-value significant

VERY misleading if don’t take measures to control false positive rate

In this simulation by Simmons et al we see how the p-value varies as we add
participants

Note that it dips below red line (0.05) at 26 participants.
So we would stop recruiting, claim evidence for an effect - false positive

False positive rate inflated because essentially doing an unforeseeable number of
multiple comparisons

Instead, I’'m going to show you an example using Bayes factors



What is a Bayes factor?

= Fit two statistical models representing competing hypotheses

= Bayes factor is ratio of evidence for one model over the other
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Evidence favors the null hypothesis Evidence favors the alternative hypothesis

To compute a Bayes factor...

Fit models representing competing hypotheses

BF = ratio of evidence for one model over the other

GIVEN THE DATA AND THE PRIORS

Scale: Ratio 1:1 indicates equivalent evidence for each model

Depending on which direction we move away from 1 and how far, evidence increases
for one model or the other



Optional stopping with Bayes factors

Bayes factor’s advantage is interpretation:

= Belief about relative plausibility of two models given data

Why is it ok to compute multiple Bayes factors when doing optional stopping?
Because of the BF’s interpretation
We’re comparing the “relative plausibility of two models” given data

Relative plausibility is not affected by how many times we compute Bayes factor or
how many participants we add



Sequential Bayes factor design

= Decide a priori cut-off Bayes factor

= Start recruitment

= Compute Bayes factor periodically

= Stop recruitment when Bayes factor reaches the cut-off

= Option: Set a maximum

Schénbrodt et al., 2015; Schénbrodt & Wagenmakers, 2018

Applied to an experiment: Design called SBF

Decide a priori on Bayes factor cut-off

Recruit until cut-off reached

Option: set a maximum

Nothing new, seen a couple of examples in psycholing, but new and exciting to me

Now I'll describe our example experiment



ERPs at an unexpected word
in strong vs. weak constraint:

An example - Strong: There was too

application: much sun outside,
he bought a large hat...
ERP S0

DCIGINENINE . \Weak: She liked to make
herself cozy,
so she bought a large hat...

Compared ERPs at unexpected words in strong vs. weakly constraining contexts

We looked at two ERP components:



An example
application:

ERP
experiment

The first was the N400

Based on literature...

ERPs at an unexpected word
in strong vs. weak constraint:

hat‘
..

N400: Same amplitude




ERPs at an unexpected word
in strong vs. weak constraint:

An example
application:

=
[
~

ERP
experiment

PNP: Larger

The second was the post-N400 positivity

Based on the literature...



» Model 1: Constraint predicts amplitude [H;]
» Model 0: Constraint not a predictor [Hy ]

- Bayes factor = Model 1 : Model 0

Here is how our models mapped to our hypotheses:
Model 1 assumed constraint would predict amplitude — mapped to H1
Model 0 assumed constraint not a predictor — mapped to HO

BF = ratio M1:MO
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» Recruit until Bayes factor of at least 10
(strong evidence)

« Max. 150 participants

We determined our sample size like so
We decided on a cut-off of 10 based on priors / models

Stage 1 RR approved



Preliminary results

Current N: 29 subjects

Unfortunately only 29 recruited so far

So | will present preliminary results
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N400 hypotheses still indistinguishable

Condition:
=== (b) Strong constraint/low cloze

= (d) Weak constraint/low cloze

Amplitude (nV)

-250 0 250 500 750 1000

Bayes factor = 1.38
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Interesting distinction in pre- / post-PEAK N400 amplitude
Maybe because of this, Bayes factor of close to 1

Can talk more about this in question time

Summary: At current sample size, unable to distinguish between N400 hypotheses
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Approaching evidence threshold for PNP
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Bayes factor = 9.92
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There appears to be a PNP constraint effect in expected direction

Bayes factor already very close to evidence threshold!



Bayes factor as N increases

minimum
Bayes factor

F= = e = i i s ey e e
£ ]
3] Effect:
E @ N400 constraint
> PNP constraint
o 3
o

e

5 10 15 20 25 29
Number of subjects

Just quickly, evolution of BF as sample size increases
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Bayes factor cut-off
reached early:

= Save resources
= Strong evidence

Conclusions

Cut-off not reached:

= Results still interpretable

1. Imagine we had reached cut-off with 29 subjects! Saved a lot of resources,
provided strong evidence for hypotheses

Would this mean that all ERP experiments only need 29 subjects? NO! Specific to this
design, these models, these priors, these data.

2. Imagine we recruit to 150 and don’t reach cut-off, results will still be interpretable:
- Posterior estimates effect size
- BFs < 10 still interpretable

- BF < 3 (inconclusive) = tells us something about the adequacy of our design for
answering the question

Thank you!
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Q&A

Q: Have you re-analysed previous ERP studies to see whether they would have reached the BF=10 cut-off? What
would be your intuition about whether more/less participants were needed?

A: No, no re-analysis. It would depend heavily on what priors had been assumed and what a reasonable cut-off for
those studies was (we only chose 10 because of our specific priors/imodels). But my intuition would be they needed
more participants rather than less.

Q: To determine the priors, could you first test a small number of participants and then use the posterior estimate
as a prior?

A: As long as these participants aren't included in the final analysis, yes — a small pilot study can be useful.
Although with a small number of pilot participants, the posterior estimates could be quite noisy, so you'd also want
to consider the size and direction of effect estimates from the literature.

Q: Is it possible to do the equivalent of p-hacking with Bayes factors?

A: Absolutely! You can definitely set up your priors so that you'll find strong evidence with a small sample size. It's
important therefore to do (and look out for) sensitivity analyses, where Bayes factors for a range of priors are
shown. For example, because we had very specific expectations from the literature about effect direction and size,
we pre-registered truncated priors with a small standard deviation to test our hypotheses. But to see how different
priors might affect our conclusions, we also pre-registered sensitivity analyses with increasingly large standard
deviations, as well as with non-truncated priors.

Q: Would this approach be suitable for new students? What resources can you recommend?

A: The student would need an understanding of Bayesian analysis, so perhaps it's not suitable for complete
beginners. | can highly recommend the Uni Potsdam SMLP Summer School: https://vasishth.github.io/smlp2021/
Materials for all the tracks are posted online, e.g. the Introduction to Bayesian analysis is here:
https://vasishth.github.io/IntroBayesSMLP2021/ A textbook is available online hébe:
https://vasishth.github.io/bayescogsci/
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Bonus slides
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Evidence threshold exceeded for N400 predictability

Amplitude (1V)
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Bayes factor = 402
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PNP predictability hypotheses indistinguishable

Amplitude (nV)

Condition:
= (a) Strong constraint/high cloze

== (b) Strong constraint/low cloze
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Bayes factor = 1.74
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Bayes factor as N increases
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N40O0 statistical model

(1

N400 ~

constraint + predictability +

| item) + (1 + constraint + predictability | subj)

Where:
- Constraint = entropy
- Predictability = log2 smoothed cloze probability

Priors:
- Constraint: N(0, 0.2)
- Predictability: N, (0, 0.2)
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PNP statistical model

PNP ~

constraint + predictability +

(1 | item) + (1 + constraint + predictability |

Where:
- Constraint = entropy
- Predictability = log2 smoothed cloze probability

Priors:
- Constraint: N (0, 0.2)
- Predictability: N (0, 0.2)

subj)
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